Techno Press
Tp_Editing System.E (TES.E)
Login Search


eas
 
CONTENTS
Volume 18, Number 6, June 2020
 

Abstract
The current study compares the effect of structure-soil-structure interaction (SSSI) on the dynamic responses of adjacent buildings and isolated structures including soil-structure interaction (SSI) with the responses of fixed-base structures. Structural responses such as the relative acceleration, displacement, drift and shear force were considered under earthquake ground motion excitation. For this purpose, 5-, 10- and 15-story structures with 2-bay moment resisting frames resting on shallow foundations were modeled as a group of buildings in soft soil media. Viscous lateral boundaries and interface elements were applied to the soil model to simulate semi-infinite soil media, frictional contact and probable slip under seismic excitation. The direct method was employed for fully nonlinear time-history dynamic analysis in OpenSees using 3D finite element soil-structure models with different building positions. The results showed that the responses of the grouped structures were strongly influenced by the adjacent structures. The responses were as much as 4 times greater for drift and 2.3 times greater for shear force than the responses of fixed-base models.

Key Words
structure-soil-structure interaction; soil-structure interaction; adjacent structure; direct method; nonlinear dynamic analysis

Address
Behroozeh Sharifi, Gholamreza Nouri and Ali Ghanbari: Faculty of Engineering, Kharazmi University, Tehran, Iran

Abstract
A building structural system of moment resisting frame (MRF) with concrete filled steel tubular (CFST) columns and wide flange H beams, is one of the most conveniently constructed structural systems. However, there were few studies on evaluating seismic performance of full-scale CFST columns under high axial compression. In addition, some existing famous design codes propose various limits of width-to-thickness ratio (B/t) for steel tubes of the ductile CFST composite members. This study was intended to investigate the seismic behavior of CFST columns under high axial load compression. Four full-scale square CFST column specimens with a B/t of 42 were carried out that were subjected to horizontal cyclic-reversal loads combined with constantly light, medium and high axial loads and with a linearly varied axial load, respectively. Test results revealed that shear strength and deformation capacity of the columns significantly decreased when the axial compression exceeded 0.35 times the nominal compression strength of a CFST column, P0. It was obvious that the higher the axial compression, the lower both the shear strength and deformation capacities were, and the earlier and faster the shear strength degradation occurred. It was found as well that higher axial compressions resulted in larger initial lateral stiffness and faster degradation of post-yield lateral stiffness. Meanwhile, the lower axial compressions led to better energy dissipation capacities with larger cumulative energy. Moreover, the study implied that under axial compressions greater than 0.35P0, the CFST column specimens with B/t limits recommended by AISC 360 (2016), ACI 318 (2014), AIJ (2008) and EC4 (2004) codes do not provide ultimate interstory drift ratio of more than 3% radian, and only the limit in ACI 318 (2014) code satisfies this requirement when axial compression does not exceed 0.35P0.

Key Words
concrete filled steel tubular (CFST) columns; seismic performance; axial compression; ultimate interstory drift ratio; B/t limit

Address
Hao D. Phan:Faculty of Civil Engineering, The University of Danang - University of Science and Technology, Danang 550000, Vietnam/ Department of Civil and Construction Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
Ker-Chun Lin:Department of Civil and Construction Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan/ National Center for Research on Earthquake Engineering, Taipei 10668, Taiwan


Abstract
One of the most important issues in structural systems is evaluation of the margin of safety in low and mid-rise buildings against the progressive collapse mechanism due to the earthquake loads. In this paper, modeling of collapse propagation in structural elements of RC frame buildings is evaluated by tracing down the collapse points in beam and column structural elements, one after another, under earthquake loads and the influence of column removal is investigated on how the collapse expansion in beam and column structural members. For this reason, progressive collapse phenomenon is studied in 3-story and 5-story intermediate moment resisting frame buildings due to the corner and edge column removal in presence of the earthquake loads. In this way, distribution and propagation of the collapse in progressive collapse mechanism is studied, from the first element of the structure to the collapse of a large part of the building with investigating and comparing the results of nonlinear time history analyses (NLTHA) in presence of two-component accelograms proposed by FEMA_P695. Evaluation of the results, including the statistical survey of the number and sequence of the collapsed points in process of the collapse distribution in structural system, show that the progressive collapse distribution are special and similar in low-rise and mid-rise RC buildings due to the simultaneous effects of the column removal and the earthquake loads and various patterns of the progressive collapse distribution are proposed and presented to predict the collapse propagation in structural elements of similar buildings. So, the results of collapse distribution patterns and comparing the values of collapse can be utilized to provide practical methods in codes and guidelines to enhance the structural resistance against the progressive collapse mechanism and eventually, the value of damage can be controlled and minimized in similar buildings.

Key Words
progressive collapse mechanism, collapse distribution, nonlinear time history analysis, intermediate moment resisting frame building

Address
Department of Civil Engineering, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran

Abstract
Fragility curves are useful tools to estimate the damage probability of buildings owing to seismic actions. The purpose of this study is to investigate seismic vulnerability of reinforced concrete (RC) buildings, according to the 2007 and 2018 Turkish Seismic Codes, using fragility curves. For the numerical analyses, typical five- and seven-storey RC buildings were selected and incremental dynamic analyses (IDA) were performed. To complete the IDAs, eleven earthquake acceleration records multiplied by various scaling factors from 0.2g to 0.8g were used. To predict nonlinearity, a distributed hinge model that involves material and geometric nonlinearity of the structural members was used. Damages to confined concrete and reinforcement bar of structural members were obtained by considering the unit deformation demands of the 2007 Turkish Seismic Code (TSC-2007) and the 2018 Turkey Building Earthquake Code (TBEC-2018). Vulnerability evaluation of these buildings was performed using fragility curves based on the results of incremental dynamic analyses. Fragility curves were generated in terms of damage levels occurring in confined concrete and reinforcement bar of structural members with a lognormal distribution assumption. The fragility curves show that the probability of damage occurring is more according to TBEC-2018 than according to TSC-2007 for selected buildings.

Key Words
vulnerability assessment, fragility curves, structural damages, TSC-2007, TBEC-2018

Address
Munzur University Department of Civil Engineering, Tunceli 62000, Turkey

Abstract
Recently, population based optimization algorithms are developed to deal with a variety of optimization problems. In this paper, the salp swarm algorithm (SSA) is dramatically enhanced and a new algorithm is named Enhanced Salp Swarm Algorithm (ESSA) which is effectively utilized in optimization problems. To generate the ESSA, an opposition-based learning and merit function methods are added to standard SSA to enhance both exploration and exploitation abilities. To have a clear judgment about the performance of the ESSA, firstly, it is employed to solve some mathematical benchmark test functions. Next, it is exploited to deal with engineering problems such as optimally designing the benchmark buildings equipped with multiple tuned mass damper (MTMD) under earthquake excitation. By comparing the obtained results with those obtained from other algorithms, it can be concluded that the proposed new ESSA algorithm not only provides very competitive results, but also it can be successfully applied to the optimal design of the MTMD.

Key Words
salp swarm algorithm; enhanced SSA; opposition based learning; merit function; optimization; multiple tuned mass damper

Address
Farzad Raeesi, Sina Shirgir, Bahman F. Azar, Hedayat Veladi and Hosein Ghaffarzadeh: Faculty of Civil Engineering, University of Tabriz, Tabriz, Iran

Abstract
Due to incessant earthquakes, many historic South Nias traditional timber houses have been damaged while some still stand today. As Nias is part of an extremely active tectonic region and the buildings are getting older by day, it is essential that these unique houses are well maintained and functioning well. A post-earthquake condition assessment was conducted on 2 selected buildings; \'Buildings\'was found out to be poor and the main structural members were not performing as intended. In \'Buildings B\',the columns were not well anchored to the ground, no tie beams to tie the columns together, and eventually, the timber columns moved in various directions during the earthquake. The frequent earthquakes along with deterioration due to lack of proper maintenance program are responsible for the non-survival of the buildings. Thus, a process guideline for managing the maintenance of these buildings was proposed. This is necessary because managing the maintenance works could help to extend the life of the buildings and seek to avoid the need for potentially expensive and disruptive intervention works, which may damage the cultural significance of the buildings.

Key Words
building defects; condition assessment; defect intensity index; earthquake; seismic shaking; traditional wooden house

Address
Department of Civil & Construction Engineering, College of Engineering,
Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia

Abstract
The phenomenon of reflection and transmission of plane waves at an interface between fluid half space and orthotropic piezothermoelastic solid half-space with two-temperature has been investigated. Energy ratios of various reflected and transmitted waves are computed with the use of amplitude ratios. The law of conservation of energy across the interface has been justified. It is found that the energy ratios are the functions of angle of incidence, frequency of independent wave and depend on the different piezothermoelastic material. A piezothermoelastic material has been considered which is in welded contact with water. Variations of energy ratios corresponding to the reflected waves and transmitted waves are computed and shown graphically for the two different models. A particular reduced case of interest is also discussed.

Key Words
reflection; piezothermoelastic; orthotropic; transmission; amplitude ratios

Address
Rajneesh Kumar and Poonam Sharma: Department of Mathematics, Kurukshetra University, Kurukshetra 136119, Haryana, India


Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2020 Techno-Press
P.O. Box 33, Yuseong, Daejeon 34186 Korea, Tel: +82-42-828-7996, Fax : +82-2-736-6801, Email: info@techno-press.com