Techno Press
Tp_Editing System.E (TES.E)
Login Search

You have a Free online access.
Volume 9, Number 3, September 2020

Water quality demonstrates physical, chemical and biological characteristics of water. The quality of surface and groundwater is currently an important concern with population growth and industrialization. Over exploitation of water resources due to demand is causing the deterioration of surface water and ground water. Periodic water quality testing must be carried out to protect our water resources. The present research analyses the spatial variation of surface water and groundwater in and around the lakes of Hyderabad. Twenty-Seven lakes and their neighboring bore water samples are obtained for water quality monitoring. Samples are evaluated for specific physico-chemical parameters such as pH, Total Dissolved Solids (TDS), Cl, SO4, Na, K, Ca, Mg, and Total Hardness (TH). The spatial variation of water quality parameters for the 27 lakes and groundwater were analysed. Correlation and multiple regression analysis were carried out to determine comparative study of lake and ground water. The study found that most of the lakes were polluted and this had an impact on surrounding ground water.

Key Words
water quality; physico-chemical parameters; surface water; ground water; urbanization

Giridhar M.V.S.S, Shyama Mohan and D. Ajay Kumar:Centre for Water Resources, Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad (JNTUH), Kukatpally, Hyderabad, Telangana (500085), India

The removal of two dyes, namely Methylene Blue (MB) and Reactive Brillant Red (RR) from aqueous solution was investigated using magnetite iron coated pumice (MIP) composite in the Fenton-like oxidation process. A weight ratio of 2.5 g (with the molar ratio of Fe3+ to Fe2+ to be 2) (5%) of iron to the total pumice (50 g) was enabled during synthesis of catalyst. Surface composition and characteristics of the catalyst were assessed by SEM-EDX, FT-IR, Raman spectral analysis. The effect of the amount of pumice solely used or MIP, H2O2 concentration, pH and initial concentration of MB or RR dyes on Fenton-like process efficiency was investigated. EDAX spectrums of pumice and MIP showed that oxygen and silisium are the major elements. The Fe content of MIP increased to 2.24%. SEM, FT-IR and Raman spectrums confirmed the impregnation of Fe on pumice surface. The experimental results revealed that high removal rates of dyes could be obtained using MIP that demonstrated a higher stability for removal of MB dye. pH affected the removal efficiency of both dyes and the degradation of both dyes was sharply dropped when pH was increased above 4. The removal of dyes did not significantly change with increasing H2O2 concentration. Degradation rates of both MB and RR dyes increased 3.3 and 2.8 times with the use of MIP compared to pumice alone, respectively. Furthermore, MIP enabled a good removal efficiency at higher dye concentrations. It can be emphasized that MIP composite can be used in the heterogeneous Fenton-like systems considering the economic and easily separation aspects.

Key Words
azo dyes; Fenton-like process; methylene blue; magnetite iron; pumice; reactive red

Deniz İzlen Çifçi and Süreyya Meriça: Çorlu Engineering Faculty, Environmental Engineering Department, Tekirdağ Namik Kemal University, 59860 Çorlu/Tekirdağ/Turkey

Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2020 Techno-Press
P.O. Box 33, Yuseong, Daejeon 34186 Korea, Tel: +82-42-828-7996, Fax : +82-2-736-6801, Email: